筛选2亿种化合物,机器学习发现数百种潜在新冠药物
近日有关于西部材料最新消息的话题受到了许多网友们的关注,大多数网友都想要知道西部材料最新消息问题的具体情况,那么关于西部材料最新消息的相关信息,小编也是在网上收集并整理的一些相关的信息,接下来就由小编来给大家分享下小编所收集到的与西部材料最新消息问题相关的信息吧。
以上就是关于西部材料最新消息这个话题的相关信息了,希望小编分享给大家的这些新闻大家能够感兴趣哦。
据美国每日科学网站12日报道,美国科学家借助一种强大的机器学习方法,通过筛选约2亿种化学物质,发现了数百种新冠肺炎候选药物。
该研究负责人、加州大学河滨分校教授安南达桑卡·雷解释说,这一药物发现平台是一种与人工智能有关的计算机算法,可通过反复试错学习预测药物的活性,其预测能力还能不断改进,“对于系统性发现治疗新冠肺炎新药而言,此类平台是重要的第一步”。
在研究中,团队成员乔尔·科瓦列夫斯基用到了与新冠病毒蛋白相互作用的65种人类蛋白的配体,并为每种人类蛋白生成了机器学习模型,这些模型经过训练,可从其3D结构中识别出新配体。
研究团队使用这些机器学习模型,从包含2亿种化学物质的数据库中筛选出了1000多万种小分子,并确定了能最有效靶向与新冠病毒蛋白相互作用的65种人类蛋白的化合物。他们从这些化合物中鉴定出了已经获得美国食品药品管理局(FDA)批准的化合物,例如一些药品和食品中使用的化合物。他们还使用机器学习模型计算了各种化合物的毒性,这有助于摒弃潜在的有毒候选物。
研究人员表示,这种方法不仅使他们鉴定出对单个人类蛋白靶标具有最显著活性的候选药物,还发现了一些有望抑制两个或多个人类蛋白靶标的化学物。
雷说:“最令我兴奋的是那些可能会挥发的化合物,这为吸入疗法带来了惊喜。”
研究人员认为,传统依赖细胞培养测定的方法很昂贵,而且可能需要数年时间对药物进行测试,与之相比,他们的机器学习平台在初步筛查大量化学物质方面具有优势。而且,该平台不仅能用于研发抗新冠肺炎药物,还能加速其他多种疾病药物的研发进程。
本文转载自科技日报,记者刘霞。
- 标签:西部材料最新消息
- 编辑:孙子力
- 相关文章
-
聪明人只买“低配车”?老司机坦言:没这4个配置,谁开谁难受!
在汽车界中经常流传着这样一句话:“聪明人只买低配车”。入手低配车确实应了不少人的心声,毕竟低…
- 就在刚刚,工信部曝光多款重磅车型申报图!这次国产车又是大赢家
- 新增一款入门车型!小鹏N5申报图曝光,续航或可达600公里
- 1.5T+电机!工信部曝光比亚迪汉DM-i车型,或售价18万起?
- 续航600km!小鹏P5更多细节信息曝光,新车或延迟至明年上市?
- 提升全民健康素养水平,科普如何入脑入心?
- 13部门:支持乡村医生参加职工基本养老保险
- 0!广东昨日无新增本土确诊病例和本土无症状感染者
- 美国国立卫生研究院最新研究发现2019年12月新冠病毒已在美国传播
- 国家耳鼻咽喉疾病临床医学研究中心陕西分中心落户西京医院
- 正面硬刚汉兰达!别克亮出王牌,全新中型SUV将于6月19日上市